图片在线av 中文在线av 中文在线av 中文
绪言Featureplot是一个在单细胞转录组联系的著作中出场频率很高的一个图,比如底下的这个图1。然则在多基因共抒发的方面,FeaturePlot只可援助两个基因,因此,咱们思整理一篇多元化Featureplot推文,使用FeaturePlot,ggplot,scCustomize等要害,来中意单基因或多基因共抒发的需求,不错望望哦。
图片
图1;开始:Single-cell transcriptional profling reveals aberrant gene expression patterns and cell states in autoimmune diseases多种需务遗弃1、画单个基因FeaturePlot(sce,'MS4A1')
图片
2、画多个基因(分面在一张图)genes_to_check = c("CD3D","CD3E" )FeaturePlot(sce,features = genes_to_check)
图片
3、画更多的基因(分面在一张图)pl=lapply(genes_to_check, function(cg){FeaturePlot(sce, cg) + NoLegend() + NoAxes()})ps <- cowplot::plot_grid(plotlist = pl)ps
图片
4、画多个基因【共抒发在一张图(FeaturePlot遗弃)】genes_to_check = c("CD3D","CD3E" )mat = sce@assays$RNA$counts[ genes_to_check ,]table( mat[1,]>0 ,mat[2,]>0 )sce$ok = mat[1,]>0 | mat[2,]>0 table(sce$ok)FeaturePlot(sce,'ok')
图片
5、画多个基因【共抒发在一张图,仅限于两个基因(FeaturePlot遗弃)】FeaturePlot提供了blend参数,用于看两个基因的共抒发情况,然则不援助两个基因以上的共抒发。
genes_to_check = c("CD3D","CD3E" )FeaturePlot(sce,genes_to_check,blend = T)
图片
6、画多个基因【共抒发在一张图(ggplot遗弃)】# 提真金不怕火UMAP坐标umap_df <- as.data.frame(pbmc@reductions$umap@cell.embeddings)umap_df$cluster <- as.factor(pbmc@meta.data$seurat_clusters)head(umap_df)# 然后提真金不怕火基因抒发数据并与UMAP坐标统一gene_df <- as.data.frame(GetAssayData(object = pbmc)[c("CD3D", "CD19", "CD4"), ])merged_df <- merge(t(gene_df), umap_df, by = 0, all = TRUE)head(merged_df)
用ggplot进行可视化:
library(ggnewscale)#绘画 三个基因ggplot(merged_df, vars = c("umap_1", "umap_2", "CD3D", "CD19", "CD4"), aes(x = umap_1, y = umap_2, colour = CD3D)) + geom_point(size=0.3, alpha=1) + scale_colour_gradientn(colours = c("lightgrey", "green"), limits = c(0, 0.3), oob = scales::squish) + new_scale_color() + geom_point(aes(colour = CD19), size=0.3, alpha=0.7) + scale_colour_gradientn(colours = c("lightgrey", "blue"), limits = c(0.1, 0.2), oob = scales::squish) + new_scale_color() + geom_point(aes(colour = CD4), size=0.3, alpha=0.1) + scale_colour_gradientn(colours = c("lightgrey", "red"), limits = c(0, 0.3), oob = scales::squish) + theme_bw() + DimPlot(pbmc,label = TRUE)
图片
基因若是出现多个细胞亚群神采,可能会出现互相心事的温顺,底下的代码会产生羼杂的神采来展示:
# rgb()函数是用于创建RGB神采。# 前 3 个参数分裂默示红、绿和蓝三个神采通谈的值,取值鸿沟一般是 0-255。library(scales) merged_df2 <- cbind( merged_df, color=rgb( rescale(merged_df$CD4), rescale(merged_df$CD3D), rescale(merged_df$CD19) ))# 然后绘制图片ggplot(merged_df2, aes(umap_1, umap_2, colour = color)) + geom_point() + scale_colour_identity() + new_scale_colour() + # shape = NA, 隐形的图层 geom_point(aes(colour = CD4 ),shape = NA, size=0.1) + scale_colour_gradient(low = "grey", high = "red") + new_scale_colour() + geom_point(aes(colour = CD3D),shape = NA, size=0.1) + scale_colour_gradient(low = "grey", high = "green") + new_scale_colour() + geom_point(aes(colour = CD19),shape = NA, size=0.1) + scale_colour_gradient(low = "grey", high = "blue") + theme_bw()+ DimPlot(pbmc,label = TRUE)
图片
7、画多个基因【共抒发在一张图(scCustomize 遗弃)】scCustomize是一个单细胞转录组数据可视化的R包,内部聚会了一些常用的数据可视化要害,不错与Seurat包进行联用。咱们用Plot_Density_Joint_Only函数进行多基因和洽密度图的绘制。
#install.packages("scCustomize")#install.packages("Nebulosa")library(Nebulosa)library(scCustomize)pbmc <- pbmc3k.finalp_density <- Plot_Density_Joint_Only(seurat_object = pbmc, features = c("CD3D", "CD19", "CD4"), custom_palette = BlueAndRed())p_density + DimPlot(pbmc,label = TRUE)
图片
结语但愿以上的尝试和追念省略匡助你画出合适的基因标注的降维聚类图。若是需要对FeaturePlot进行更进一步的好意思化,不错参考咱们之前的推文哦:【Featureplot好意思化】
图片
本站仅提供存储管事,总计践诺均由用户发布,如发现存害或侵权践诺,请点击举报。